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Laboratory experiments were performed in which an intrusive gravity current was
observed using shadowgraph and particle tracking methods. The intrusion was gen-
erated in a two-layer fluid with a sharp interface by mixing the fluid behind a vertical
lock gate and then suddenly withdrawing the gate from the tank. The purpose of the
experiments was to determine the structure of the velocity field inside the intrusion
and the stability characteristics of the interface. Soon after the removal of the lock
gate, the front of the intrusive gravity current travelled at a constant speed close to
the value predicted by theory for an energy-conserving gravity current. The observed
structure of the flow inside the intrusion can be divided into three regions. At the
front of the intrusion there is an energy-conserving head region in which the fluid
velocity is nearly uniform with speed equal to the front speed. This is followed by a
dissipative wake region in which large billows are present with their associated mixing
and in which the fluid velocity is observed to be non-uniform and have a maximum
speed approximately 50% greater than the front speed. Behind the wake region is a
tail region in which there is very little mixing and the velocity field is nearly uniform
with a speed slightly faster than the front speed.

1. Introduction
A gravity current is the mainly horizontal, buoyancy-driven motion of a fluid of

one density into a fluid of another density. Gravity currents occur frequently in
geophysical and industrial flows. A comprehensive description of gravity currents
and their numerous applications is given in Simpson’s (1997) book. In this paper we
investigate a type of intrusive gravity current that flows along the interface between
two fluid layers of different densities and has a density between that of the two layers.

More specifically, we investigate the type of intrusive gravity current that is pro-
duced by a full-depth lock release in a tank containing two equal-depth layers of
fluids of different densities. This type of flow is generated by inserting a vertical
barrier (the lock gate) into the tank and then mixing the fluid on one side of the
barrier (the lock) to produce a fluid with a uniform density that is approximately
the average of the two layers. The intrusion generated when the barrier is withdrawn
from the tank is found to be symmetric about the interface between the two layers
and to occupy approximately half the depth of each layer. Previous observations,
as described for example by Britter & Simpson (1981), have shown that these in-
trusions advance initially at a constant speed. Holyer & Huppert (1980) and de Rooij,
Linden & Dalziel (1999) have shown that these types of symmetric intrusions can
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be described by a straightforward generalization of Benjamin’s (1968) theory for an
energy-conserving boundary gravity current. Indeed, for Boussinesq flows (e.g. salt
water advancing into fresh water) the intrusion is identical to two boundary gravity
currents that are travelling together on either side of the interface.

Benjamin (1968) proposed a theory for steadily advancing gravity currents that
flow along a solid horizontal boundary. This theory gives a relationship between the
front speed and the far-downstream depth of the gravity current. For the special case
of an energy-conserving gravity current, the theory predicts that the current occupies
half the depth of the tank. Also, for this special case, Benjamin (1968) derived an
approximate expression for the shape of the current.

Benjamin’s theory, strictly speaking, is for an empty cavity advancing into a liquid.
To apply his theory to Boussinesq currents it is necessary to assume that there is
no mixing between the current and the surrounding fluid and that there is no net
relative flow within the current. In reality, however, neither of these assumptions is
true. Mixing is observed to occur in Boussinesq gravity currents due to the formation
of billows on the interface separating the fluids. Mixing results when the billows
grow in size and subsequently collapse behind the gravity current ‘head’ region. As
a consequence, the velocity cannot be uniform within a gravity current. Simpson &
Britter (1979) conducted experiments on a boundary gravity current, and showed that
there is a relative forward velocity behind the steadily advancing front, which supplies
the volume flux necessary to balance the losses from the current due to mixing. They
found, based on mean volume flux measurements, that there is an internal flow within
the current characterized by a mean ‘overtaking speed’ of about 15% greater than
the front speed.

Despite the obvious mixing in the wake region, the present experiments as well as
previous full-depth lock-release gravity current experiments, such as those described in
Rottman & Simpson (1983), and the direct numerical simulations of Härtel, Meiburg
& Necker (2000), reveal that Benjamin’s energy-conserving theory accurately predicts
the front speeds and current heights. The success of Benjamin’s theory implies that the
dynamics of a gravity current front are not greatly affected by the mixing processes
nor the internal flow within the current. The objective of the present paper is to
gain some insight into why mixing plays such a minor role in gravity current frontal
dynamics.

To achieve this objective, we performed an experimental study of the velocity field
in intrusive gravity currents produced by full-depth lock releases. We obtained detailed
measurements of the two-dimensional velocity structure within symmetric intrusive
gravity currents using digital particle tracking velocimetry. Each velocity field was
compared with a corresponding shadowgraph image to relate the velocity structure
to the mixing processes.

The results of our experiments reveal that the intrusion can be divided into three
flow regions. There is a ‘head region’ at the front of the current in which the velocity
is nearly uniform and has approximately the same speed as the front itself. This is
followed by a wake region in which there is billow formation and associated mixing.
In this region the velocity field is non-uniform and speeds can be as high as 50%
greater than the front speed. Behind the wake region is a tail region in which there is
very little mixing and the velocity field is nearly uniform with a speed slightly faster
than the front speed.

This description of the intrusion velocity field contradicts the accepted model, as
described for example in Simpson (1997). In this model fluid from the rear of the
gravity current propagates all the way to the front where it flows back along the
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Figure 1. (a) A sketch of an intrusion front defining the nomenclature used in the text. (b) A
typical vertical density profile, in which δ represents the thickness of the interface.

current interface and then mixes with the ambient fluid in the billow structures that
form in the wake of the head region. Our description shows that most of the fluid
from the rear of the gravity current propagates to just behind the head where it mixes
with the ambient fluid leaving the head region largely unaffected.

Some previous experimental results are consistent with our description of the
interior flow in a gravity current. Measurements of the density field in gravity currents
by Hallworth et al. (1996) and Hacker, Linden & Dalziel (1996) show that the fluid
within the head of a gravity current produced by a fixed-volume release does not
change significantly during the constant speed phase. However, these studies did not
measure the velocity field inside the gravity current.

In § 2 we derive the theoretical front speed and current heights for an energy-
conserving intrusion with small relative density differences. The experimental pro-
cedure is described in § 3, and the results from the experiments are presented and
discussed in § 4. In § 4 we also compare our experimental measurements to the vel-
ocity structure Härtel et al. (2000) observed in their two-dimensional simulations with
free-slip boundary conditions. Finally, § 5 includes a summary of the findings and the
major conclusions drawn from the experiments.

2. Theory
A schematic diagram of an intrusive gravity current with front speed Uf and total

thickness D flowing along the interface between two fluid layers, each of equal depth
H , is shown in figure 1. The lower layer fluid has density ρ2 and the upper layer fluid
has density ρ0, with ρ2 > ρ0, and it is assumed that the interface thickness δ between
the layers is infinitely thin (i.e. δ ≈ 0). The density ρ1 of the fluid within the intrusion
is taken to be the average of the densities in the two layers: ρ1 = (ρ0 + ρ2)/2. The
downstream intrusion heights relative to upstream interface position are h0 in the top
layer and h2 in the bottom layer.

Given H , ρ0 and ρ2, we seek expressions for h0, h2 and Uf . Following the analysis
of Holyer & Huppert (1980), de Rooij et al. (1999) applied mass conservation in
each layer of ambient fluid and, assuming the flow to be energy-conserving, applied
Bernoulli’s equation along streamlines OA and OB, to derive relationships in each layer
between the intrusion front speed Uf and the downstream intrusion heights h0 and h2,

U2
f = 2g′0h0

(
H2

(H − h0)2
+
g′0
g

)−1

(2.1)

U2
f = 2g′2h2

(
H2

(H − h2)2
− g′2
g

)−1

, (2.2)

where the reduced gravities are defined by g′0 = g(ρ1− ρ0)/ρ0 and g′2 = g(ρ2− ρ1)/ρ2.
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Since in this case ρ1 = 1
2
(ρ0 + ρ2), these reduced gravities can be simplified to

g′0 = 1
2
g(γ−1− 1) and g′2 = 1

2
g(1− γ), where γ = ρ0/ρ2 is the density ratio between the

upper and lower layers.
For Boussinesq fluids g′0/g ≈ g′2/g ≈ 0, so equations (2.1)–(2.2) can be approximated

as

Uf =
√

2g′0h0

(
1− h0

H

)
, (2.3)

Uf =
√

2g′0h2

(
1− h2

H

)
. (2.4)

Since these two expressions must be equal, h0 = h2. Benjamin (1968) found that
a gravity current flowing over a rigid boundary is energy-conserving only if it fills
one-half of the tank. We expect that an energy-conserving intrusion will similarly be
half-depth in each of the ambient layers, so that

h0 = h2 =
H

2
. (2.5)

Substitution of these intrusion heights into the integral momentum conservation equa-
tion (equation (7) in de Rooij et al. 1999) reveals that this is indeed the case. Finally,
substituting (2.5) into (2.3) and (2.4) gives an expression for the non-dimensional front
speed

Fr =
Uf√
g′0H

=
1

2
, (2.6)

where Fr is the Froude number. This is identical to the result Benjamin (1968)
obtained for an energy-conserving boundary gravity current if the upstream interface
depth is taken as the solid boundary (the lower boundary in the upper layer and the
upper boundary in the lower layer).

This analysis assumes that the interface is infinitely thin and the fluid layers are
Boussinesq. In our experiments both the interface thickness and the density differences
between the layers are finite.

Britter & Simpson (1981) and Faust & Plate (1984) investigated the effect of the
interface thickness in symmetric Boussinesq intrusions and observed that both the
front speed and the intrusion heights decrease as δ increases. As the ratio of δ to
the intrusion thickness D is increased, the strength of the billows is reduced and
mixing between the fluid layers is suppressed. For interface thickness ratios less than
δ/D ≈ 0.2 they determined that an intrusive gravity current behaves very similarly to
an intrusion travelling along an infinitely thin interface. For values of the interface
thickness ratio above 0.2, the properties of the intrusion were a function of this ratio.
At a critical ratio δ/D ≈ 1, the mixing between the fluid in the intrusion and the
surrounding fluid is completely suppressed. All of the experiments described in this
paper are for intrusive gravity currents with interface thickness ratios well under 0.2.

The effects of non-Boussinesq density ratios are discussed in the Appendix. For the
range of densities in our experiments these effects are shown to be very small.

3. Experimental procedure
3.1. Filling of the tank and generation of intrusions

A schematic of the experimental apparatus is shown in figure 2. The experiments
were performed in a rectangular Plexiglas tank of 182 cm length, 23 cm width and
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Figure 2. The experimental setup before the intrusion is released into a two-layer fluid.

30 cm depth. The tank was first filled to a depth of 10 cm with salt water of density
ρ2. A 10 cm layer of fresh water of density ρ0 was then carefully added on top
of the saline layer, using a porous float to reduce mixing. The interface thickness
was measured from the shadowgraphs using a ruler and was less than 1.5 cm in all
cases, so that all experiments were performed on intrusions with effectively sharp
interfaces. Once filled, a vertical gate was inserted a distance of 30 cm from one end
of the tank to form a lock and the fluid behind the gate was mixed to an average
density ρ1 ≈ (ρ0 +ρ2)/2. Densities were measured with an ANTON PAAR DMA 500
density meter with an accuracy of ±10−5 g cm−3. To start the experiment, the gate
was smoothly withdrawn vertically, causing the fluid in the lock to flow along the
interface as an intrusive gravity current. The intrusions were observed by using either
a shadowgraph to visualize the density field or particle tracking velocimetry (PTV) to
quantify the velocity field.

3.2. Shadowgraph visualization

The shadowgraphs were obtained by covering the front of the tank with a sheet of
drafting vellum and positioning a 300 W slide projector 4 m behind the tank. The
shadowgraph was photographed every 0.25 s using a 35 mm camera, and was also
recorded with a COHU 4912 CCD camera onto super-VHS video tape. The video
window was 60 cm wide and its downstream end was located 10 cm from the endwall,
as shown in figure 2. The image-processing software DigImage was used to process
the recordings off-line and the front speed and current heights for each intrusion were
calculated.

3.3. Particle visualization

For PTV, the fluid in the lock was seeded with approximately 4.5 g of particles of
Pliolite VT, an opaque resin with an average density of 1.022 g cm−3. The particles
were sieved to have diameters between 425 and 600 µm and were soaked in a wetting
agent to reduce the effect of surface tension. The particles were illuminated by the
light from a slide projector placed 3 m behind the tank. The light was reflected up
through the bottom of the tank by a mirror at a 45◦ angle to the horizontal, as shown
in figure 3. A 1.5 cm wide vertical sheet of light was created in the centre of the
tank by covering sections of the bottom of the tank. The motion of the particles was
imaged by the CCD camera and recorded onto a video tape. The video window was
30 cm wide and its downstream end was located 30 cm from the endwall, as shown in
figure 2. This window overlapped with a section of the shadowgraph window, allowing
the two images (from separate experiments) to be matched. The DigImage software
was used to track the particles and calculate the flow velocities. Approximately 500
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Figure 3. The lighting arrangement used during PTV.

ρ0 ρ2 g′0
Run (g cm−3) (g cm−3) (cm s−2) Fr φ ReH

PTV Runs
A 1.0164 1.0287 5.955 0.474 0.472 3700
B 1.0085 1.0306 10.783 0.462 0.424 4800
C 1.0044 1.0363 15.604 0.493 0.437 6200
D 1.0029 1.0399 18.081 0.476 0.451 6400
E 0.9985 1.0465 23.615 0.488 0.451 7500
F 0.9867 1.0544 33.627 0.467 0.431 8600

Shadowgraph Runs
G 1.0081 1.0308 11.040 0.494 0.451 5200
H 1.0026 1.0399 18.248 0.494 0.466 6700
I 1.0028 1.0406 18.507 0.493 0.488 6700
J 0.9982 1.1822 90.531 0.483 0.465 14500

Table 1. Experimental parameters.

particles were tracked in each video frame and the velocity field was determined at
points on either a 16× 32 or 20× 40 grid, depending on the run.

In order to minimize the refraction of light due to the mixing of the different
fluids, it was necessary to match their refractive indices. For this purpose, a small
amount of 2-propanol was added to the fresh water layer, which changed its refractive
index. The refractive indices were measured using an ATAGO Palette PR-101 digital
refractometer. The addition of 2-propanol, which has a density of 0.785 g cm−3,
slightly reduced the density of the light fluid layer. To ensure that the particles were
approximately neutrally buoyant, densities ρ0 and ρ2 were selected such that the fluid
of density ρ1 within the intrusion closely matched the 1.022 g cm−3 density of the
Pliolite. As a result, it was necessary to add some salt to the upper layer to raise its
density above that of fresh water.

A total of 10 experiments were conducted with parameters listed in table 1,
corresponding to four shadowgraph runs and six PTV runs. The range of Reynolds
numbers ReH = UfH/ν is between 3700 and 14 500, where Uf is the front speed,
H is half the total fluid depth in the tank and ν is the kinematic viscosity of fresh
water. These Reynolds numbers are well above the value ReH ≈ 2000 Simpson &
Britter (1979) determined for Reynolds number independence for boundary gravity
currents.
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Figure 4. The length L of the intrusion in the video window as a function of the time t since the
intrusion first entered the window, for all experiments listed in table 1. The straight line has slope
equal to the energy-conserving front speed given by (2.6).

4. Results and discussion
4.1. Front speeds and current heights

Figure 4 shows the intrusion length L scaled by H as a function of time scaled by
(g′0/H)1/2 for all experiments. The time t = 0 is set to the time when the intrusion
first enters the video window. Figure 4 shows that the front speed of each intrusion
was constant during the period it passed through the video window. The solid line
in this plot has a slope corresponding to the energy-conserving front speed given by
(2.6), and the agreement with the experimental values is within the resolution of the
measurements.

Table 1 lists the measured Froude numbers Fr and dimensionless intrusion thick-
nesses φ = D/2H . These values show no systematic variation with ReH , and are
only a few percent lower than the theoretical energy-conserving values Fr = 1/2 and
φ = 1/2. This deviation from the energy-conserving values is at least partially due to
the finite thickness of the interface, which has been shown by Faust & Plate (1984)
to reduce slightly both Fr and φ. Thus for all of the intrusions in these experiments,
Benjamin’s energy-conserving theory accurately predicts the front speeds and cur-
rent thicknesses, despite the observed dissipative mixing in the wake region of the
intrusions.

4.2. Two-dimensional velocity structures and current shapes

Contours of the instantaneous horizontal and vertical velocity components, u and
v, respectively, nondimensionalized by the front speed Uf , are presented in figure 5.
Results for two different Reynolds numbers are shown corresponding to Run B
(ReH = 4800) in figure 5(a,c) and Run F (ReH = 8600) in figure 5(b,d ). The contour
scale for the horizontal velocity components only includes dimensionless velocities
U/Uf > 1 to emphasize the horizontal velocities moving faster than the front speed.
Each example shows a region of high-speed fluid, beginning at x/H ≈ 1.5, where
x is the distance behind the intrusion front, and extending throughout the rear of
the intrusion. In this region the horizontal velocities are approximately 30% to 50%
faster than the front speed. However, from x/H ≈ 0 to 1, in the region corresponding



40 R. J. Lowe, P. F. Linden and J. W. Rottman

2.5 2.0 1.5 1.0 0.5 0
1.0

1.2

1.4

1.6

–0.5

0

0.5 (a)

z
H

2.5 2.0 1.5 1.0 0.5 0
1.0

1.2

1.4

1.6

–0.5

0

0.5 (b)

z
H

2.5 2.0 1.5 1.0 0.5 0
–0.5

0

0.5 (c)

z
H

–0.5

0

0.5

2.5 2.0 1.5 1.0 0.5 0
–0.5

0

0.5 (d )

z
H

–0.5

0

0.5

x /H

Figure 5. (a,b) Contour maps of the horizontal velocity for Run B (ReH = 4800) and Run F
(ReH = 8600), respectively. (c,d ) Corresponding contours of the vertical velocity. The contour
interval for the horizontal velocity is 0.1 and for the vertical velocity is 0.2. All velocities are scaled
by the intrusion front speed and Benjamin’s energy-conserving shape is plotted as a dashed line.

to the intrusion head, the velocities are nearly uniform and significantly weaker, with
speeds within approximately 10% of Uf .

The vertical velocity contours (figure 5c,d ) show that there is little vertical motion
within the head region. Further behind, near x/H ≈ 1.5, however, there are regions
of high vertical velocities with maximum velocities on the order of 50% of the front
speed. These high vertical velocities are found in positive and negative pairs and
correspond to the billows in the wake of the intrusion. Similar horizontal and vertical
velocity contour plots were obtained for all other runs, and the core of high-velocity
fluid appeared to increase slightly in strength as the Reynolds number was increased.
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Figure 6. The velocity field inside the intrusion in Run D (ReH = 6400), measured using PTV. The
arrows represent fluid velocity (the length of the arrow on the left boundary at z/H = 0 has a mag-
nitude of 0.46 Uf). The contours are lines of constant streamfunction non-dimensionalized by UfH
and plotted at a contour interval of 0.012. The dashed lines represent Benjamin’s energy-conserving
current shape.

Figure 6 is a velocity vector plot of the flow field in the intrusion head for Run
D (ReH = 6400), in a frame of reference moving with the current front. The data
have been time-averaged over 1.5 s using velocity data sampled every 0.25 s. Contours
of the instantaneous streamfunction are also shown. The dominant features of the
flow are the two vortices visible in the upper and lower parts of the intrusion at
x/H ≈ 1.8. A comparison with the corresponding shadowgraph image in figure 7(a)
shows that these vortices correspond to the largest billows. These vortices roll up and
advect fluid away from the centreline and entrain ambient fluid. When the billows
subsequently collapse, the resulting mixed fluid has lost its forward momentum and
is left behind in the wake. As a result, the diluted fluid mixture does not penetrate
into the intrusion head. This velocity structure explains why Hallworth et al. (1996)
and Hacker et al. (1996) observed that the dense fluid within the head of a gravity
current remains largely undiluted throughout the constant velocity phase.

The core of high-velocity fluid behind the largest billows supplies the dense fluid
lost by mixing. The relative velocities are much smaller in front of the billows, and
more closely match the front speed. This velocity structure explains why Benjamin’s
energy-conserving model works so well for full-depth lock-release gravity currents
with energy dissipation in the wake. In the head region, Benjamin’s energy-conserving
assumptions are indeed justified because the flow field is close to uniform and the
dense fluid driving the motion remains largely undiluted. The fluid in the gravity
current head propagates as a nearly uniform region of fluid, largely insensitive to the
dissipation in the wake.

Benjamin’s (1968) theoretical shape for an energy-conserving gravity current (see
his § 4.3, equations (4.32–33)) is plotted as a dashed line on the shadowgraph image
in figure 7. It provides an accurate representation of the intrusion head, which further
illustrates the robust nature of Benjamin’s energy-conserving solution. The intrusion
departs from Benjamin’s shape in the wake region, which forms behind the intrusion
head as the billows collapse into three-dimensional small-scale turbulence. In this
wake region, the intrusion thickness appears constricted in the vertical direction,
presumably due to the high forward velocities which reduce the pressure within the
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Figure 7. (a) A shadowgraph image of the intrusion in Run H (ReH = 6700). Benjamin’s
energy-conserving current shape is plotted as a dashed line; (b) the horizontal component of
fluid velocity on the intrusion centreline as a function of x, the distance behind the front, for Run
D (ReH = 6400). The standard deviation for this measurement is indicated by the shaded region.

intrusion and constrict the interface. Despite the obvious energy losses behind the
head, these experiments show that the head of a lock-release gravity current behaves
like an energy-conserving gravity current, and that the head is largely insensitive to
the complicated flow patterns in the wake.

The centreline horizontal velocity u along the intrusion centreline, non-
dimensionalized with Uf , is plotted against the distance behind the front x/H in
figure 7(b), beneath the shadowgraph image of the corresponding flow with almost
identical ReH . From x/H ≈ 0 to 1.5 the horizontal velocity component closely
matches the front speed and there is little flow relative to the front. After x/H ≈ 1.5
the velocity increases and attains a maximum velocity approximately 50% greater
than the front speed at x/H ≈ 2. Comparison with the shadowgraph image reveals
that this maximum velocity occurs at the location where the strongest billows occur.
Beyond x/H ≈ 3 the velocity decreases until a near uniform velocity approximately
30% greater than the front speed is attained as the interface restabilizes downstream.

It is interesting to note that Kneller, Bennett & McCaffrey (1999) found a similar
velocity structure in their measurements in a boundary gravity current, which had a
comparable Reynolds number to our experiments. Using laser Doppler anemometry
they found that the maximum velocity in their gravity current was 51% greater
than the front speed and occurred at a distance x/H ≈ 1.2 behind the front. The
magnitude of this maximum velocity is nearly the same as the measured values in
our experiments and the horizontal position is close to our value. A small difference
with our experiments is that they found this maximum velocity occurred at a height
z ≈ 0.2h above the no-slip boundary, where h is the current height, whereas in our
experiments this maximum velocity occurred on the centreline.
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Figure 8. The time-averaged volume flux structure for Run F. (a) The region in the flow (shaded
in grey) here the horizontal velocities are moving faster than the front speed. The vertical solid
lines indicate the sections where the flux was calculated and Benjamin’s energy-conserving shape
is plotted as a dashed line. (b) The dimensionless volume flux q = Q/UfH , where Q is defined by
(4.1), is plotted versus the distance behind the intrusion front.

4.3. Volume fluxes

The horizontal volume flux was calculated for Run F at several vertical cross-sections
in the flow. The volume flux Q per unit width of the tank was computed by integrating
along vertical sections of the flow where the velocities are moving faster than the
front speed, such that

Q =

∫ d2

d1

[u(x, z)−Uf] dz. (4.1)

The limits d1 and d2 represent the heights above and below the intrusion centreline,
respectively, where the horizontal velocities u(x, z) are moving faster than the front.
The shaded region in figure 8(a) indicates the region in the flow where u is greater
than the front speed and the vertical solid lines indicate the 10 equally spaced vertical
sections where Q was calculated. The volume fluxes were time-averaged for 3.67 s
using data sampled every 1/6 s.

The dimensionless volume flux q = Q/UfH of fluid within the intrusion is plotted
against the distance behind the intrusion front x in figure 8(b). The volume flux is
nearly constant at q ≈ 0.1 far downstream in the region from x/H ≈ 3 to 5. In
the turbulent wake region from x/H ≈ 1.5 to 3, where the billows break down, q
increases, attaining a maximum of q ≈ 0.2 at x/H ≈ 1.5. Although an increase in the
volume flux appears to violate volume conservation, it is important to recognize that
the volume fluxes are computed by integrating over the region in the flow where the
fluid is moving forward relative to the front. As a result, the increase in the volume
flux is due to entrainment of ambient fluid. If we had measured the velocity in the
ambient fluid layers it would be possible to integrate over the entire depth of the fluid
in the tank, in which case we would expect volume to be conserved.

From x/H ≈ 1 to 1.5 the volume flux decreases dramatically, as nearly 75% of the
volume flux at x/H ≈ 1.5 is detrained and never reaches the front. Comparison with
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the velocity structure for Run F in figure 5 shows that the strongest billows emerge
at x/H ≈ 1.75, and produce the strongest vertical velocities at this location. As these
billows roll up, they draw fluid at x/H ≈ 1.5 away from the centreline and little
excess flux reaches the front.

Simpson & Britter (1979), using their stationary gravity current apparatus, measured
an ‘overtaking speed’ Uo, which they defined as the mean velocity of the dense fluid
supplying the gravity current. They determined Uo indirectly by measuring the flux
Q per unit width of the dense fluid needed to arrest the front and assuming that the
flow in the wake has both uniform velocity Uo and depth d. This gives Uo = Q/d,
which they measured to be Uo/Uf = 0.16± 0.04 in their experiments. The overtaking
speed Uo was determined for Run F using the relationship Uo/Uf = qH/d. The
mean height of the wake d measured far downstream was d/H = 0.44 ± 0.04, and
the dimensionless flux q ≈ 0.1. Hence, the overtaking speed was determined to be
Uo/Uf = 0.23 ± 0.05 which is similar to the value obtained by Simpson & Britter
(1979).

It is important to mention that this overtaking speed is often cited as the flow speed
within the wake of a gravity current even though Simpson & Britter (1979) comment
that it is possible for the maximum internal velocity to be larger. Our measurements
show that the overtaking speed is less than half of the maximum internal velocity,
and to use a single overtaking speed to describe the flow within the gravity current
does not capture the complexity of the structure.

4.4. Comparison with direct numerical simulations

Härtel et al. (2000) performed DNS of Boussinesq lock-release gravity currents flowing
over both no-slip and slip (stress-free) boundaries. They carried out two-dimensional
simulations over a range of Reynolds numbers ReH ′ , based on the total depth H ′,
between 240 and 64 000, and a single three-dimensional simulation with no-slip
boundary conditions at ReH ′ = 1500. The length scale H ′ is equivalent to the layer
depth H for a symmetric lock-release intrusion, since an intrusion is equivalent to a
pair of boundary gravity currents, one a reflection of the other about the interface
(Britter & Simpson 1981). The results of their simulations for gravity currents over
slip boundaries can be directly compared to the intrusions discussed in this paper,
which similarly exclude the effects of a no-slip boundary.

The simulations display most of the features observed in laboratory lock-release
gravity currents, including interfacial billows behind the gravity current head. They
found that these billows first emerge at a distance x/H ′ = 2.5 to 4 behind the
front, which is comparable to (although larger than) the distance x/H = 1.5 to
2.5 we observed in the shadowgraph images. The most notable difference is that,
in their two-dimensional simulations, the vortices cannot break down into small-
scale three-dimensional turbulence, which is precluded in a two-dimensional model,
and the billows subsequently continue to persist and grow in the wake of the cur-
rent, attaining physically unrealistic amplitudes. Figure 9(a) shows a two-dimensional
simulation visualized by isopycnal contours for a gravity current at ReH ′ = 4800
advancing over slip boundaries. Comparison with the intrusion shadowgraph image
in figure 7 shows that in laboratory gravity currents the billows rapidly break down
into three-dimensional small-scale turbulence and vanish downstream as the interface
restabilizes.

Although the billows fail to break down in the two-dimensional simulations, Härtel
et al. (2000) note that the front speeds from their two-dimensional simulations are in
close agreement with the result from their three-dimensional simulation, implying that
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Figure 9. Two-dimensional lock-exchange DNS with slip boundaries. (a) The flow structure visual-
ized by isopycnal contours. (b) The longitudinal profile of the horizontal velocity component along
the upper boundary (Härtel, private communication).

the front speed is not dependent on three-dimensional effects. Moreover, for flows
along slip boundaries above a sufficiently high Reynolds number, the dimensionless
front speed approaches Uf/(g

′
0H
′)1/2 = 0.49. This value is within 2% of the energy-

conserving value, and closely matches the front speeds in our experiments (see table 1).
Härtel et al. (2000) superimposed Benjamin’s (1968) theoretical energy-conserving
shape on their simulations and observed a near perfect match at the current head,
further supporting our suggestion that the head of a gravity current conserves energy
during its constant speed phase.

Figure 9(b) shows the horizontal velocity component u plotted along the upper
shear-free boundary for the two-dimensional simulation shown in figure 9(a). From
x/H ′ ≈ 0 to 2, in the head where the interface is stable, the velocity is nearly constant
at the front speed. Behind this constant speed region, the velocity increases with
increasing distance behind the front and then oscillates, attaining local maxima at
x/H ′ ≈ 3 and x/H ′ ≈ 4, with magnitudes of approximately 50% and 70% greater
than the front speed, respectively. Figure 9(a) reveals that these peaks occur directly
below the largest billows, which is consistent with our experiments. In front of these
billows, where the interface is stable, the velocity is constant, which is consistent with
our observations.

The obvious difference between the experimental velocity profiles (figure 7) and the
two-dimensional simulations is that the latter show multiple velocity peaks, while our
measurements have only a single peak. As mentioned above, this discrepancy results
from the fact that in the two-dimensional simulations the billows cannot collapse
into small-scale turbulence and their effects on the velocity structure persist and grow
in the wake. Our experiments show that these billows break down upon reaching a
finite size and gradually lose their vorticity. As a result, there is a single velocity peak
where the billows have attained their largest size immediately before they start to
break down. It is, therefore, not surprising that the shape of the velocity profile in
figure 9(b) is nearly identical to the experimental profile in figure 7, only in the frontal
region extending from the front of the current to the first velocity peak. In the two-
dimensional simulation the initial velocity peak has a magnitude about 50% greater
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Figure 10. Schematic representation of the two-dimensional flow structure within a symmetric
intrusion, in which u represents the fluid velocity within the current. Only the upper half of the
intrusion is shown; the intrusion is assumed to be symmetric about the thick horizontal dashed line.

than the front speed, in good agreement with the maximum velocities observed in
our experimental measurements. The larger secondary peak, with a magnitude about
70% greater than the front speed, is not observed in our experiments, because the
billow responsible for this maximum would have collapsed due to a three-dimensional
instability. We would expect much closer agreement in the wake region, however, if we
could compare our results to the three-dimensional DNS in Härtel et al. (2000), but
unfortunately this simulation has no-slip boundary conditions and does not include
any longitudinal velocity profiles to compare with our experimental measurements.

5. Summary and conclusions
These experiments reveal a velocity structure within a full-depth lock-release in-

trusive gravity current that is quite different from the currently accepted picture.
Previous gravity current models (see Simpson 1997) assume that dense fluid at the
rear of a gravity current travels faster, and reaches the nose of the current and returns
back towards the wake along the shear interface separating the dense and ambient
fluid layers. Although these experiments reveal that some of the dense fluid at the
rear of the intrusion reaches the front, most of the dense fluid is advected away from
the centreline due to the billows, and never reaches the front. A more appropriate
gravity current front model is presented in figure 10, which divides the current into
three distinct regions. At the front of the intrusion there is an energy-conserving
head region in which the fluid velocity is nearly uniform with speed equal to the
front speed. This is followed by a dissipative wake region in which large billows are
present with their associated mixing and in which the fluid velocity is observed to
be non-uniform and with maximum speed approximately 50% greater than the front
speed. Behind the wake region is a tail region in which there is very little mixing and
the velocity field is nearly uniform with a speed slightly faster than the front speed.

The maximum velocity was found to be approximately 50% greater than the front
speed and occurred near the position in the intrusion where the largest billows form.
In this region, the fluid within the intrusion is detrained into the wake, so velocities
higher than the front speed are required to balance the mass lost through mixing. The
diluted fluid mixture in the wake does not penetrate into the head of the intrusion,
which explains why a gravity current head does not dilute significantly during its
constant speed phase.
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Benjamin’s energy-conserving analysis assumes that there is no relative flow within
the head of a gravity current. Our measurements reveal that this is a good approxima-
tion: horizontal velocities were found to be no greater than about 10% of the front
speed. Hence, the kinetic energy of the internal circulation is less than approximately
20% of the total kinetic energy in the head, which explains why it can be neglected in
the theory. We conclude, therefore, that intrusions generated by a lock-release – and by
implication gravity currents travelling along a slip boundary – for Reynolds numbers
in the range 3700–14 500, are well described by Benjamin’s energy-conserving theory.
The speed and the shape of the current agree well with the theory, despite the fact
that dissipation is observed behind the head. This supports the notion that the flow
is controlled at the head, and the dynamics are essentially energy-conserving there.

Isao Kanda provided extensive help with DigImage and the PTV technique. Alison
Newkirk and Victoria Arrigoni, undergraduate students in the MAE Department at
UCSD, assisted with the experiments and the analysis of the data. We thank Carlos
Härtel, Eckart Meiburg and Frieder Necker for providing us with the results of their
numerical simulations shown in figure 9.

Appendix. Effect of the density ratio
In the environment density differences are rarely higher than a few percent and

the Boussinesq approximation is valid. But for many industrial flows higher density
ratios are common. For these non-Boussinesq cases there are no analytical solutions
to the governing equations, which led Holyer & Huppert (1980) to obtain numerical
solutions. However, for weakly non-Boussinesq fluids we can use perturbation meth-
ods to determine an approximate solution. Using the nomenclature defined in § 2, we
define an expansion parameter ε > 0 such that

γ−1 =
ρ2

ρ0

= 1 + 2ε. (A 1)

The reduced gravities are then expressed as

g′0
g

= ε,
g′2
g

= ε− 2ε2 + O(ε3). (A 2)

Using the intrusion height ratios found for a symmetric Boussinesq intrusion we
assume an expansion of the form

h0

H
= 1

2
+ aε+ O(ε2),

h2

H
= 1

2
+ bε+ O(ε2) (A 3)

for the current heights in a weakly non-Boussinesq intrusion. The coefficients a and
b are determined by substituting (A 2) and (A 3) into the momentum conservation
equation (equation (7) in de Rooij et al. 1999). Equating (2.1) and (2.2) gives the
following relations for the intrusion front speed and current heights:

Uf√
g′0H

= 1
2
− 1

4
ε+ O(ε2), (A 4)

h0

H
= 1

2
+ 3

8
ε+ O(ε2), (A 5)

h2

H
= 1

2
− 3

8
ε+ O(ε2). (A 6)
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Equations (A 5)–(A 4) show that the effect of perturbing the density ratio away from
the Boussinesq limit is to decrease the dimensionless front speed and to make the
intrusion asymmetric about the upstream interface. The intrusion is shifted up by
a small amount, although the total thickness of the intrusion stays the same (to
this approximation) as that of the Boussinesq intrusion. The upper limit for ε in
these experiments is 0.09 (see table 1), which according to (A 4) corresponds to a
decrease in Fr by about 4%, consistent with our measurements. This confirms that
the Boussinesq solution given in (2.6) gives a reasonable approximation over the full
range of experiments reported in this paper.
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